Acta Crystallographica Section C

## Crystal Structure

Communications
ISSN 0108-2701

## $\operatorname{Bis}(\mu$-3-nitrobenzene-1,2-dicarboxylato) $-\kappa^{8} O^{1}, O^{2}: O^{2}, O^{3} ; O^{3}, O^{2}: O^{2}, O^{1}$ -bis[triaqua(2-carboxy-3-nitro-benzoato- $\left.\kappa^{2} O, O^{\prime}\right)$ lanthanum(III)] dihydrate

## Li-Qin Xiong and Chuan-Min Qi*

College of Chemistry, Beijing Normal University, 100875 Beijing, People's Republic of China
Correspondence e-mail: qicmin@sohu.com

Received 25 September 2006
Accepted 10 November 2006
Online 12 December 2006

The title compound, $\left[\mathrm{La}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{NO}_{6}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{NO}_{6}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]$-$2 \mathrm{H}_{2} \mathrm{O}$, consists of dimeric units related by an inversion center. The two $\mathrm{La}^{\text {III }}$ atoms are linked by two bridging bidentate carboxylate groups and two monodentate carboxylate groups. Each $\mathrm{La}^{\text {III }}$ atom is nine-coordinated by six O atoms from five different carboxylate groups and three from water molecules. Hydrogen bonds between the water molecules and between the solvent water and a carboxylate O atom are observed in the structure. In the crystal packing, there are slipped $\pi-\pi$ stacking interactions between the parallel benzene rings. Both hydrogen-bonding and $\pi-\pi$ interactions
combine to stabilize the three-dimensional supramolecular network.

## Comment

Rare-earth carboxylates show an intriguing variety of crystal structures as a result of the usually high coordination number of the metal ions and the many types of coordination displayed by carboxylate ligands in such complexes. Dimeric

(I)
and polymeric forms are most frequently observed for these compounds (Quchi et al., 1988). Such complexes can be used as starting materials in a wide range of applications in materials science, including superconductors, magnetic materials, catalysts and luminescent probes (Seo et al., 2000). There are some reports on the complexes of lanthanides with 3-nitro-benzene-1,2-dicarboxylic acid (Brzyska \& Kloc, 1992a,b; Makushova et al., 1989). We report here the preparation and crystal structure of the title compound, $\left[\mathrm{La}_{2}(\mathrm{H} L)_{2}(L)_{2}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, (I), where $L$ is 3-nitrobenzene-1,2-dicarboxylate.


Figure 1
The molecular structure of (I), showing $30 \%$ probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity. [Symmetry codes: $(A)-x+1,-y+2,-z+1 ;(B) x-1, y+1, z ;(C)-x+2,-y+1,-z+1$.]

The asymmetric unit of complex (I) consists of two La atoms, two $L$ ligands, two $\mathrm{H} L$ ligands, six coordinated water molecules and two solvent water molecules (Fig. 1). Each La atom is coordinated by six O atoms of five different carboxylate groups and by three O atoms of water molecules. They adopt a distorted tricapped trigonal-prismatic arrangement, with atoms $\mathrm{O} 3, \mathrm{O} 9, \mathrm{O} 2 A, \mathrm{O} 13, \mathrm{O} 14$ and O 15 filling the vertexes and atoms $\mathrm{O} 1 A, \mathrm{O} 2$ and O 8 capping the rectangular faces [symmetry code: $(A)-x+1,-y+2,-z+1$ ] (Fig. 2). A similar coordination environment was observed previously for lanthanoid(III) complexes, such as $\left[\mathrm{La}_{2}\right.$ (pyridine-3,4-dicarboxylate $\left.)_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$ (Qin et al., 2006) and $\left[\mathrm{Ln}_{2}(\right.$ imidazole-4,5-dicarboxylate $\left.)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O} \quad(\mathrm{Ln}=\mathrm{Sm}$ and Eu ; Qin et al., 2005). The $\mathrm{La}-\mathrm{O}_{\mathrm{COO}}$ bond distances range from 2.491 (2) to 2.622 (2) $\AA$ (mean $2.549 \AA$; Table 1), and those of the La$\mathrm{O}_{\text {aqua }}$ bonds from 2.466 (2) to 2.615 (2) $\AA$ (mean $2.541 \AA$ ), all of which are within the range of those observed for other ninecoordinate $\mathrm{La}^{\mathrm{III}}$ complexes with oxygen-donor ligands (Kiritsis et al., 1998; Pan et al., 2000; Qin et al., 2006). The resulting $\mathrm{La} \cdots \mathrm{La}$ intradimer separation is 4.288 (7) $\AA$. It is noteworthy that complex (I) contains both protonated ( $\mathrm{H} L$ ) and deprotonated ( $L$ ) groups. The $\mathrm{H} L$ ligand adopts a bis(monodentate) coordination mode, in which the distances within the - COO groups are significantly different $[\mathrm{C} 9-\mathrm{O} 7=$ $1.300(4) \AA$ and $\mathrm{C} 9-\mathrm{O} 8=1.216$ (4) $\AA$, and $\mathrm{C} 16-\mathrm{O} 9=$ 1.264 (4) $\AA$ and $\mathrm{C} 16-\mathrm{O} 10=1.242$ (4) $\AA$ ], despite the fact that one is an acid group and the other is a carboxylate group. The $L$ ligand adopts a bidentate chelating-monodentate coordination mode, which acts as a $\mu_{2}$-bridge through one bridging O atom $[\mathrm{O} 2(1-x, 2-y, 1-z)]$ and two monodentate O atoms ( O 1 and O 3 ) to link two $\mathrm{La}^{\mathrm{III}}$ atoms. The coordination mode contrasts with that in [ $\mathrm{La}_{2}$ (pyridine-3,4-dicarboxylate $)_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ ], in which the carboxylate groups adopt two kinds of coordination modes; one is monodentatebidentate and the other is chelating-bidentate (Qin et al., 2006).

In the $\mathrm{H} L$ ligand, one carboxylate group shows a distortion from the molecular plane; the dihedral angle between the


Figure 2
A schematic representation of the coordination geometry of the $\mathrm{La}^{\text {III }}$ atom. [Symmetry code: $(A)-x+1,-y+2,-z+1$.]
planes of the benzene ring (C2-C7; plane 1) and the O1/C1/O2 carboxylate group is $30.5(3)^{\circ}$. The other carboxylate group is almost perpendicular to the molecular plane; the dihedral angle between plane 1 and the plane of the $\mathrm{O} 3 / \mathrm{C} 8 / \mathrm{O} 4$ carboxylate group is 87.4 (4) ${ }^{\circ}$. These features are similar to those in the $L$ ligand, in which the dihedral angle between the $\mathrm{C} 10-\mathrm{C} 15$ (plane 3) and $\mathrm{O} 8 / \mathrm{C} 9 / \mathrm{O} 7$ planes is $21.1(4)^{\circ}$, and that between plane 3 and the $\mathrm{O} 10 / \mathrm{C} 16 / \mathrm{O} 9$ plane is $89.2(4)^{\circ}$. Within each ligand, the nitro groups are almost coplanar with the benzene ring; the dihedral angle between plane 1 and the N 1 / O5/O6 plane is $6.4(5)^{\circ}$, and that between plane III and the $\mathrm{N} 2 / \mathrm{O} 11 / \mathrm{O} 12$ plane is $2.7(5)^{\circ}$. Finally, the dihedral angle between the two benzene rings (planes 1 and 3 ) is $12.38(16)^{\circ}$.

Intermolecular hydrogen bonds ( $\mathrm{O} 3^{\mathrm{ii}} \ldots \mathrm{O} 14, \mathrm{O} 4{ }^{\mathrm{ii}} \ldots \mathrm{O} 13$, O7..O16 and O13 ..O16; symmetry codes and parameters are given in Table 2) bridge the molecules, forming an infinite chain along the $a$ axis, and intermolecular hydrogen bonds between atoms O 15 and $\mathrm{O} 1^{\text {iii }}$ and between O 16 and $\mathrm{O} 4^{\text {iii }}$ generate an infinite chain along the $b$ axis. The solvent water molecule O 16 is in a tetrahedral environment with one waterwater interaction, two water-caboxylate interactions involving O atoms of the $\mathrm{H} L$ ligand and one water-carboxylate interaction with an O atom of the $L$ ligand. There are slipped $\pi-\pi$ stacking interactions between the parallel benzene rings of the $\mathrm{H} L$ ligands with a distance of $\mathrm{C} 13 \cdots \mathrm{C} 14=3.404$ (5) $\AA$ (Fig. 3), which interlink molecules into an infinite one-dimensional chain along the $c$ axis and further interconnect a two-dimen-


Figure 3
Part of the crystal structure of (I), showing $\pi-\pi$ interactions as dashed lines. [Symmetry codes: (i) $-x+1,-y+2,-z+1$; (vii) $x, y, z+1$; (A) $-x+1,-y+2,-z+1 ;(B)-x+1,-y+2,-z+1 ;(C) \mathrm{x}, y, z+1$; (D) $-x+1,-y+2,-z+2$.]


Figure 4
The crystal packing of (I), viewed down the $c$ axis. Dashed lines indicate hydrogen bonds. H atoms have been omitted.
sional structure into a three-dimensional supramolecular network (Fig. 4).

## Experimental

A solution of $\mathrm{LaCl}_{3}(0.0245 \mathrm{~g}, 0.10 \mathrm{mmol})$ in water $(5 \mathrm{ml})$ was added dropwise with constant stirring to an aqueous solution ( 5 ml ) of 3-nitrobenzene-1,2-dicarboxylic acid ( $0.0211 \mathrm{~g}, 0.1 \mathrm{mmol}$ ). The pH of the mixture was adjusted to $3-4$ with 0.1 M NaOH solution; the resulting mixture was then transferred into a Teflon-lined stainless steel vessel, which was sealed and heated to 423 K for 72 h , then cooled to room temperature. The reaction mixture was then filtered and single crystals were obtained from the filtrate after a few days by slow evaporation at room temperature.

## Crystal data

$\left[\mathrm{La}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{NO}_{6}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{NO}_{6}\right)_{2^{-}}\right.$
$\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1260.42$
Triclinic, $\bar{P} \overline{1}$
$a=8.1700(12) \AA$
$b=8.9036(13) \AA$
$c=15.279(2) \AA$
$\alpha=100.828(2)^{\circ}$
$\beta=90.935(2)^{\circ}$
Data collection
Bruker SMART CCD area-detector
$\quad$ diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Sheldrick, 1996$)$
$T_{\text {min }}=0.593, T_{\text {max }}=0.683$

$$
\begin{aligned}
& \gamma=104.581(2)^{\circ} \\
& V=1054.1(3) \AA^{3} \\
& Z=1 \\
& D_{x}=1.986 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=2.12 \mathrm{~mm}^{-1} \\
& T=294(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.24 \times 0.22 \times 0.18 \mathrm{~mm}
\end{aligned}
$$

## Data collection

Bruker SMART CCD area-detector
5399 measured reflections
3711 independent reflections
3350 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=25.0^{\circ}$

## Refinement

## Refinement on $F^{2}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0292 P)^{2}\right. \\
& \quad+0.3043 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.89 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.90 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.059$
$S=1.06$
3711 reflections
316 parameters
H -atom parameters constrained

Table 1
Selected bond lengths ( $\AA$ ).

| La1-O13 | $2.466(2)$ | La1-O14 | $2.615(2)$ |
| :--- | :--- | :--- | :--- |
| La1-O3 | $2.491(2)$ | La1-O2 | $2.622(2)$ |
| La1-O9 | $2.511(2)$ | O7-C9 | $1.300(4)$ |
| La1-O8 | $2.528(2)$ | O8-C9 | $1.216(4)$ |
| La1-O2 | $2.535(2)$ | O9-C16 | $1.264(4)$ |
| La1-O15 | $2.543(2)$ | O10-C16 | $1.242(4)$ |
| La1-O1 |  |  |  |

Symmetry code: (i) $-x+1,-y+2,-z+1$.

Table 2
Hydrogen-bond geometry ( $\AA^{\circ},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| O7-H7 . . O16 | 0.85 | 1.76 | 2.599 (4) | 168 |
| O13-H13A $\cdots$ O16 | 0.85 | 2.04 | 2.881 (4) | 169 |
| $\mathrm{O} 13-\mathrm{H} 13 \mathrm{~B} \cdots \mathrm{O} 4^{\text {ii }}$ | 0.85 | 1.82 | 2.659 (3) | 169 |
| O14-H14B $\cdots \mathrm{O}^{\text {ii }}$ | 0.85 | 2.07 | 2.916 (4) | 174 |
| $\mathrm{O} 15-\mathrm{H} 15 B \cdots \mathrm{O} 1^{\text {iii }}$ | 0.86 | 1.88 | 2.734 (4) | 168 |
| $\mathrm{O} 16-\mathrm{H} 16 A \cdots \mathrm{O} 10^{\text {iv }}$ | 0.85 | 2.04 | 2.756 (4) | 142 |
| O16-H16B $\cdots \mathrm{O} 4^{\text {iii }}$ | 0.85 | 1.91 | 2.747 (4) | 169 |

Symmetry codes: (ii) $-x,-y+2,-z+1$; (iii) $x, y+1, z$; (iv) $x, y-1, z$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

The authors are grateful to the National Natural Science Foundation of China (grant Nos. 20371009 and 20171008) and the Foundation for Key Laboratory of Radiopharmaceuticals (Beijing Normal University) supported by the Ministry of Education (grant No. 0502).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV3048). Services for accessing these data are described at the back of the journal.

## References

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1998). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Brzyska, W. \& Kloc, Z. (1992a). Pol. J. Chem. 66, 247-252.
Brzyska, W. \& Kloc, Z. (1992b). Pol. J. Chem. 66, 395-401.
Kiritsis, V., Michaelides, A., Skoulika, S., Golhen, S. \& Ouahab, L. (1998). Inorg. Chem. 37, 3407-3410.
Makushova, G. N., Pirkes, S. B. \& Meshcheryakova, T. A. (1989). Zh. Neorg. Khim. 34, 1138-1142.
Pan, L., Huang, X.-Y., Li, J., Wu, Y.-G. \& Zheng, N.-W. (2000). Angew. Chem. Int. Ed. 39, 527-530.
Qin, C., Wang, X.-L., Wang, E.-B. \& Xu, L. (2005). Inorg. Chem. Commun. 8, 669-672.
Qin, C., Wang, X.-L., Wang, E.-B. \& Xu, L. (2006). Inorg. Chim. Acta, 359, 417-423.
Quchi, A., Suzuki, Y., Ohki, Y. \& Koizumi, Y. (1988). Coord. Chem. Rev. 92, 29-43
Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J. \& Kim, K. (2000). Nature (London), 404, 982-986.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

